
apan

PHYSICAL REVIEW E, VOLUME 64, 046304
Stabilized Kuramoto-Sivashinsky system
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A model consisting of a mixed Kuramoto–Sivashinsky–Korteweg–de Vries equation, linearly coupled to an
extra linear dissipative equation, is proposed. The model applies to a description of surface waves on multi-
layered liquid films. The extra equation makes it possible to stabilize the zero solution in the model, thus
opening the way to the existence of stable solitary pulses. By means of perturbation theory, treating the
dissipation and the instability-generating gain in the model~but not the linear coupling between the two waves!
as small perturbations, and making use of the balance equation for the net momentum, we demonstrate that the
perturbations may select two steady-state solitons from their continuous family existing in the absence of the
dissipation and gain. In this case, the selected pulse with the larger value of the amplitude is expected to be
stable, provided that the zero solution is stable. The prediction is completely confirmed by direct simulations.
If the integration domain is not very large, some pulses are stable even when the zero background is unstable.
An explanation for the latter finding is proposed. Furthermore, stable bound states of two and three pulses are
found numerically.
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I. INTRODUCTION

The Kuramoto-Sivashinsky~KS! equation is a well-
known model of one-dimensional turbulence, which was
rived in various physical contexts, including chemica
reaction waves@1#, propagation of combustion fronts i
gases@2#, surface waves in a film of a viscous liquid flowin
along an inclined plane@3#, patterns in thermal convectio
@4#, rapid solidification@5#, and others. It has the form

ut1uux52auxx2guxxxx, ~1!

where a.0 and g.0 are coefficients accounting for th
long-wave instability~gain! and short-wave dissipation, re
spectively.

A generalized form of the KS equation contains a line
dispersive term borrowed from the Korteweg–de Vr
~KdV! equation,

ut1uux1uxxx52auxx2guxxxx. ~2!

As well as the KS equation proper, the generalized equa
~2! applies to a description of surface waves on flowing l
uid films @6#, and it also serves as a general model wh
allows one to study various nonlinear dissipative wav
@7–10#. In particular, a subject of considerable interest w
the study of solitary-pulse~SP! solutions to both the KS
equation@11# and Eq. ~2! @8,10#. By means of numerica
methods, it is possible to find a vast family of SP solutions
Eqs. ~1! and ~2! in the form u(x,t)5u(x2st), with a con-
stant velocitys. However, it is obvious that all these solu
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tions are unstable in an infinitely long system, as the z
solution, into which SP goes over atux2stu→`, is unstable
in both equations.

It is an issue of principal interest to find a physical
relevant model which combines dissipative and dispers
features, and simultaneously supportsstableSP’s. It appears
that the simplest possibility to construct such a model is
couple Eq.~2! to an extra linear stabilizing equation, arrivin
at a system

ut1uux1uxxx52auxx2guxxxx1e1vx , ~3!

v t1cvx5Gvxx1e2ux , ~4!

where the dissipative parameter~effective diffusion coeffi-
cient! G.0 accounts for the stabilization~see below!, andc
is a group-velocity mismatch between the two wave mod
The coupling parameterse1 ande2 must have the same sig
~otherwise the coupling gives rise to an instability!, while
their magnitudes may be different. However, it is alwa
possible to make them equal,e15e2[e, by means of an
obvious rescaling ofu and v. Then, using the remaining
scaling invariance of the equations, it is possible to see
[1. Thus we will be dealing with a system containing fo
irreducible parameters,

ut1uux1uxxx2vx52auxx2guxxxx, ~5!

v t1cvx2ux5Gvxx . ~6!

Note that the system conserves two ‘‘masses’’:
©2001 The American Physical Society04-1
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M5E
2`

1`

u~x!dx, N5E
2`

1`

v~x!dx. ~7!

The system of equations~3! and~4! can find their natural
physical realization as a model describing coupled surf
and interface waves in a two-layered flowing liquid film, c
the similar interpretation of the single Eq.~1! or Eq. ~2!
mentioned above. In particular, the linear coupling via
first derivatives is the same as in known models of coup
internal waves propagating in multilayered fluids@12#. Then,
the linear dissipative equation~4! implies that the substrat
layer is essentially more viscous than the upper one. In f
the additional Eq.~6! may also be nonlinear, but it can b
checked that the inclusion of the nonlinear termvvx into this
equation does not produce any conspicuous difference; th
fore, we focus on the simplest model@Eqs. ~5! and ~6!#
which provides for the stabilization of SP’s.

The system of equations~5! and~6! is qualitatively simi-
lar to a system of linearly coupled Ginzburg-Landau~GL!
equations describing the propagation of localized pulses
fiber-optic core equipped with a distributed gain, which
linearly coupled to an extra lossy core that provides for
stability of the pulses@13–15# ~such double-core system
have recently become available to experimental studies,
they have very promising features for applications to opti
communications; see a short overview in Ref.@16#!. The
most fundamental version of this GL system is that in wh
the extra stabilizing equation is also linear@cf. Eq. ~6!#; in
this case, SP solutions can be found in an exact analy
form, and they are stable in a certain parametric region@14#.

In this work, we will find stable SP’s in the system o
equations~5! and~6!, which appear to be the first example
stable pulses in a model of the KS type. In Sec. II we anal
the stability of the zero solution, which, as mentioned abo
is a necessary condition for the stability of SP’s in an in
nitely long system. In Sec. III, an analytical perturbati
theory for the pulses is developed, which is based on trea
the gain and dissipation constantsa, g, and G in Eqs. ~5!
and ~6! as small parameters~while the group-velocity mis-
matchc need not be small!. In the zero-order approximatio
a5g5G50, Eqs.~5! and ~6! have a one-parameter famil
of exact soliton solutions. Using the known approach ba
on the balance equation for the momentum@7#, we demon-
strate that the combination of the perturbation terms in E
~5! and~6! may select one or two stationary pulses out of
continuous family existing in the zero-order approximatio
As is known@13#, the existence of two different SP solution
is a necessary condition for the stability of one of them,
second pulse~the one with smaller amplitude! is unstable, as
it plays the role of a separatrix between attraction domain
the zero solution and stable pulse.

In Sec. IV, we present results of direct numerical simu
tions of the full system@Eq. ~5! and~6!#, which demonstrate
that stable SPs exist indeed. In fact, simulations someti
produce stable pulses even in the case when the zero sol
is not stable. This stability extension may be explained
the finite size of the simulation domain. Moreover, sta
bound states of two and three pulses are also fo
numerically.
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II. STABILITY OF THE ZERO SOLUTION

As explained above, it is necessary to investigate the
bility of the trivial solutionu5v50 before the consideration
of pulses. To this end, into the linearized equations~5! and
~6! we substitute a perturbation in the formsu;exp(ikx
1lt) andv;exp(ikx1lt), wherek is an arbitrary real wave
number of the perturbation, andl is the corresponding in-
stability growth rate, which leads to a dispersion equatio

~l2 ik32ak21gk4!~l1 ick1Gk2!1k250. ~8!

The stability condition states that both solutions of the q
dratic equation~8! must satisfy the inequality Re@l(k)#<0
at all the real values ofk.

For k→0, solutions to Eq.~8! can be found in the form of
an expansion

l~k!5 il1k1l2k21•••, ~9!

wherel15(2c6Ac214)/2, and

l25
2~G2a!Ac2146~G1a!c

2Ac214
, ~10!

the sign6 being the same inl1 and l2. As l1 is always
real, at first order expansion~9! implies neutral stability. Ex-
pression~10! yields a necessary condition for the stability
the zero solution at the second order of the expans
Rel2<0, which can be cast into a form

G2a>AaGucu. ~11!

In the particular casec50, condition ~11! amounts toG
.a, which has a simple meaning: the stabilizing diffusio
coefficient in Eq.~6! must be larger than the instability
driving ‘‘antidiffusion’’ ~gain! coefficient in Eq.~5!. A very
similar necessary stability condition is known in the abov
mentioned system of coupled GL equations describing
dual-core optical fiber with one active and one passive co
@13,14#.

A comprehensive analysis of the zero-solution stabi
was performed by means of a numerical solution of the d
persion equation~8!. It was found that the full stability con-
dition does not amount to inequality~11! „i.e., it may happen
that Re@l(k)# is negative at smallk, but it takes positive
values in some interval of finite values ofk…. The numeri-
cally found stability borders in the plane of the paramet
(a,G) for a fixed valueg50.05 of the short-wave stabiliza
tion parameter in Eq.~5!, and two different values of the
group-velocity mismatch (c50 andc521) are shown by
dashed curves in stability diagrams for the pulses displa
in Figs. 1 and 2. In both cases, the zero solution is stabl
the left of the stability border. Note that, for smalla andG,
the zero-solution stability region is indeed determined by E
~11!, but at larger values ofa andG there appear additiona
stability restrictions.
4-2
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III. PERTURBATION THEORY FOR SOLITARY PULSES

At the zeroth order, settingg5G5a50 in Eqs.~5! and
~6!, but keeping an arbitrary value ofc, we arrive at a con-
servative system consisting of the KdV equation coupled
an extra linear one:

ut1uux1uxxx5vx , v t1cvx5ux . ~12!

Equations~12! have a family of exact two-component solito
solutions,

u~x,t !512h2sech2„h~x2st!…, v~x,t !5~c2s!21u~x,t !,

~13!

FIG. 1. The stability region for solitary pulses in the paramet
plane (a,G) of systems~5! and~6! for g50.05 andc50. The zero
solution is stable to the left of the dashed curve, and Eq.~19! pro-
duces two physical solutions to the right of the continuous cur
The symbols3 and s mark points at which direct simulation
show, respectively, that the solitary pulse is unstable or stable.

FIG. 2. The expected stability region for the solitary pulses
the parametric plane (a,G) for g50.05 andc521. The continu-
ous and dashed curves have the same meanings as in Fig. 1.
04630
o

whereh is an arbitrary parameter which determines the s
ton’s amplitude and width, and the velocitys takes two dif-
ferent values for givenh:

s5
1

2
@~c14h2!7A~c24h2!214#. ~14!

It will be more convenient to use, as a parameter of
soliton family, not the amplitudeh, but rather the relative
velocity

d[c2s, ~15!

in terms of which the amplitude is given by an express
obtained from Eq.~14!:

4h25c2d11/d. ~16!

The range of meaningful values ofd is restricted by the
conditionh2.0.

We have checked by direct simulations of Eqs.~12! that
soliton solutions~13! are stable within the framework of un
perturbed equations~12!. On the other hand, simulations als
clearly demonstrate that collisions between solitons hav
different velocities are inelastic~although not strongly in-
elastic, see a typical example in Fig. 3!. Hence the conserva
tive system~12!, unlike the KdV equation proper, isnot an
exactly integrable one. The nonintegrability of system~12!
has also been confirmed by analysis of its symmetries
formed by Burde@20#.

The next step is to restore the small dissipative and g
perturbations, getting back from Eqs.~12! to Eqs. ~5! and
~6!. To this end, we note that the unperturbed equations~12!
conserve not only the masses@Eq. ~7!# but also the net mo-
mentum

P5
1

2E2`

1`

~u21v2!dx. ~17!

Following Ref. @7#, in the first approximation of the pertur
bation theory the evolution of the soliton may be describ
by means of thebalance equationfor the momentum. In-
deed, a consequence of Eqs.~5! and ~6! is the following
exact evolution equation for the net momentum in the pr
ence of the perturbations:

dP

dt
5E

2`

1`

~aux
22guxx

2 2Gvx
2!dx. ~18!

Steady-state SP’s are selected by the conditiondP/dt
50. The right-hand side of Eq.~18! can be explicitly calcu-
lated in an approximation in whichu andv are substituted by
expressions~13!. After a straightforward algebra, the equ
tion dP/dt50 can be cast into the form of a cubic equati
for the relative velocityd of the unperturbed soliton@Eq.
~13!#:

5d31~7ã25c!d225d27G̃50, ã[a/g, G̃[G/g.
~19!

.

4-3
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FIG. 3. A typical result of an inelastic collision between two stable solitons with different velocities, simulated within the framew
the zero-order conservative system@Eq. ~12!# with c50 @~a! t50, ~b! t50, ~c! t540, and~d! t540#; the initial velocities of the two solitons
ares154.236 ands252.414.
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Roots of Eq.~19! select SP’s that may exist as stea
states within the framework of the perturbation theory. N
that, besides the obvious condition that physical roots fod
must be real~they may be both positive and negative!, they
must also satisfy a condition that, after the substitution i
Eq. ~16!, they produceh2.0. Generally speaking, there ma
exist up to three physical roots of Eq.~19!; however, in the
vast parametric area considered, we have never encoun
a case when Eq.~19! would indeed have three physical root
while the existence of two physical solutions is quite po
sible; see below. As mentioned in Sec. I one may expect
a SP may be stable ifprecisely twodifferent pulses exist.
Then the one with the larger amplitudeh2 has a chance to b
stable, while the pulse with the smaller amplitude is alwa
unstable@13,14#. Indeed, if there is a stable SP, we are de
ing with a bistable system, as the parameters are chose
that the zero solution is also stable; see Sec. II. In a bist
system, there should exist aseparatrix, i.e., a border between
attraction domains of two stable solutions, the separatrix
self being an unstable stationary solution. In the situat
with two different stationary SP solutions predicted by t
perturbation theory, the one with the smaller amplitude a
larger width is a natural candidate for the role of the unsta
separatrix solution, while its counterpart with the larger a
plitude and smaller width may be stable~generally speaking
it may be stable in a part of the parametric region where
situation takes place@13,14#!.
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Equation~19! may be simplified in the casec50, if we
additionally assume that both renormalized parametersã and

G̃ are large~in fact, we are interested in the case whenG̃

;ã3@1). Then the term25d may be neglected in Eq.~19!,
so that it takes the form

5d317ãd227G̃50. ~20!

In the casec50, the conditionh2.0 following from Eq.
~16! also takes a simple form: a physical root is that whi
belongs to either of the two intervals:

d,21; 0,d,1. ~21!

With regard to the assumption thatG̃ and ã are large, it is
easy to see that the simplified equation~20! always has a rea
root in the regiond.1, which is unphysical according to Eq
~21!. Two physical rootsd,21 exist under the condition

G̃,
1

3 S 14

15D
2

ã3. ~22!

Note that this condition does not contradict the necess
condition @Eq. ~11!# of the stability of the zero solution

which in the present case (c50) takes the formG̃.ã. In-
deed, the latter inequality is compatible with Eq.~22!, pro-
4-4
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STABILIZED KURAMOTO-SIVASHINSKY SYSTEM PHYSICAL REVIEW E64 046304
vided thatã.A3(15/14)'1.856, which is correct, as her
we are dealing with the case whenã is large. However,
inequality ~22! is not necessarily compatible with the fu
stability condition for the zero solution; see Fig. 1.

In the general case, it is easy to solve Eq.~19! numeri-
cally. Then, selecting a parametric region in which there
exactly two physical solutions~which, as it was explained
above, is a necessary condition for the existence of a st
SP!, one may identify a narrower region in which this co
dition holds and, simultaneously, the zero solution is sta
Stable pulses may exist only inside that region where b
necessary stability conditions overlap, and direct simulati
show thatall the pulses belonging to the region are sta
indeed, at least in case displayed in Fig. 1; see details be

The so-defined regions in the parametric plane (a,G), in
which stable SP’s are expected, are displayed, forg50.05,
in Figs. 1 and 2 forc50 and c521, respectively. The
condition of the existence of exactly two different physic
solutions for the pulses holds to the right of the continuo
curve in these figures@note that the part of the curve corre
sponding to sufficiently large values ofG is well approxi-
mated by analytical expression~22! obtained above#. At the
points belonging to the continuous curve, the two physi
solutions merge and disappear via a typical tangent~saddle-
node! bifurcation.

The same analysis performed for values of the sh
wavelength-dissipation parameterg different from the value
0.05, for which the results are presented in Figs. 1 and
shows that a variation ofg produces little change in terms o
the expected SP stability region~generally, the size of the
region increases withg). As for the effect of the group-
velocity mismatchc, we have found that the stability regio
quickly shrinks with the increase ofc whenc is positive, and
there is no stability region atc.ccr , whereccr is slightly
larger than 0.3. In this case, the areas in which, the z
solution is stable, and there are two different stationary S
respectively, do not overlap. To illustrate this point, a ve
narrow stability region in the (a,G) plane for c50.3 is
shown in Fig. 4.

IV. NUMERICAL SIMULATIONS OF SOLITARY PULSES

As stated above, it is necessary to directly check whe
stable SP’s indeed exist in the region where the stability
expected. To this end, Eqs.~5! and~6!, with periodic bound-
ary conditions were integrated by means of an implicit Fo
rier spectral method@19#, the time step being typically 0.0
and 0.02.~A description of the method is given in the Ap
pendix.! The initial conditions were taken as suggested
the perturbation theory, i.e., in the form of Eq.~13!, but with
arbitrary values of the amplitude, in order to check whet
strongly perturbed pulses relax to stable ones, i.e., whe
the stable pulses areattractors.

Results are displayed in Fig. 1 by means of the symbol3
ands, standing for unstable and stable solitons, respectiv
~it may happen that, near the border with the unstable S
some pulses which appear to be stable are subject to a
weak instability which does not manifest itself within th
integration time limits!. As seen, the pulses are indeed sta
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everywhere inside the expected stability region. Moreov
all the stable pulses were found to be strong attractors.
instance, in the case whena50.1 andG50.15, the initial
pulses definitely relaxed to a single stationary SP if th
initial amplitudeA0 exceeded 1.7. In particular, starting wit
A053 andA0512 at t50, the pulse attained the amplitud
values A56.91 andA57.18, respectively att5400. The
analytical prediction for the amplitude of the steady-st
pulse@Eq. ~13!# ~the one with the larger value of the ampl
tude! is, at the same values of the parameters,Aanal[12h2

'6.45, so that a discrepancy with the numerical results
less than 10%. On the other hand, if the initial amplitude w
too small, e.g.,A050.75, the pulse decays to zero, which
also natural, as the zero solution has its own attraction ba
Note that for the second~smaller! steady-state pulse, whic
is expected to play the role of a separatrix between the
traction basins of the stable pulse and zero solution, the
turbation theory predicts, in the same case, the amplit
Ãanal'2.15; thus it seems quite natural that the initial puls
with A053 and A050.75 relax, respectively, to the stab
pulse and to zero.

Figure 1 shows that the numerically found upper bord
of the stable-pulse region is quite close to the border of
existence region for the steady-state pulses, as predicte
the perturbation theory. Unlike this, the numerically iden
fied stability region extends far below the analytically fou
border of the zero-solution instability. For instance, it w
found that, ata50.15 andG50.2, when the zero solution i
unstable against perturbations with finite wave numbersk,
the fastest growing perturbation corresponding tok5kmax
'1.3, a fairly stable pulse with the amplitudeA511.75 was
found in the simulations; the pulse’s amplitude predicted
the perturbation theory wasAanal'11.61 in this case. More
over, we ran simulations in which the most dangerous p
turbation with the above-mentioned wave numberk51.3 and
a rather large amplitude,Apert51, was deliberately added t
the pulse in the initial configuration. Instead of growing a

FIG. 4. The expected nearly vanishing stability region for t
solitary pulses in the parametric plane (a,G) for g50.05 andc
50.3. The continuous and dashed curves have the same mea
as in Fig. 1.
4-5
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FIG. 5. Suppression of the initially imposed large perturbation which is the fastest growing instability mode in the infinite system
traveling pulse in the casesa50.15, G50.2, g50.05, andc50, in the spatial domain of the lengthL5128 with periodic boundary
conditions. The perturbation is taken asupert5vpert5a0 cos(kmaxx) with a051 andkmax51.3. Panels~a! and ~b! show the initial configura-
tions of the fields, and~c! and ~d! are their shapes produced by the direct simulations by the momentt5420.
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destroying the pulse, the perturbation wassuppressedby the
pulse, which remained stable for an indefinitely long tim
~Fig. 5!.

A cause of this extended stability can be understood
similar feature was reported in Ref.@17# for a generalized
asymmetric~with respect to the reflectionx→2x) cubic-
quintic GL equation with periodic boundary condition
which has moving-pulse solutions. An explanation was t
the moving pulse, traveling across the integration dom
periodically passes each point and suppresses the pert
tion at a rate which exceeds the perturbation growth r
~also see Ref.@10#, where stable pulses were observed in
KS-KdV equation; in that work, an explanation was that t
moving pulse was able to escape growing perturbation w
packets!. It seems very plausible that a similar ‘‘sweeping
mechanism explains the anomalous pulse stability in
present model. Indeed, when we repeated the simulation
the same values of the parameters but in a spatial dom
four times as large~i.e., the corresponding sweeping rate
four times as small!, the pulse demonstrated the expect
instability, even without any specially added perturbati
seed, see Fig. 6.

Similar to the result reported for a system of linea
coupled Ginzburg-Landau equations in Ref.@18#, bound
states~BS’s! with two or more peaks can be found in th
present model, in addition to single SP’s. To this end,
took an initial configuration constructed as a set of two
04630
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more identical exact solutions of the unperturbed system~12!
with a certain separation between them. The simulati
have shown that BS’s featuring two or more peaks of eq
amplitudes indeed develop and propagate stably. These
sults for the two-peak and three-peak BS’s are illustrated
Figs. 7 and 8, respectively. We have also checked that, e
if the amplitudes of the initial pulses and separations
tween them are changed, a BS consisting of equidis
equal-amplitude peaks finally develops, i.e., the BS’s
fairly robust dynamical objects. In this connection, it is re
evant to mention that, in the above-mentioned coupled
equations, only two-pulse BS’s are completely stable, wh
BS’s of three pulses are split by perturbations breaking th
symmetry@18#.

V. CONCLUSION

In this work, we have introduced a model based on
Kuramoto–Sivashinsky–Korteweg–de Vries equation,wh
is linearly coupled to an extra linear dissipative equatio
The model can be applied to the description of coupled s
face and interface waves on flowing multilayered liqu
films. The additional linear equation makes it possible
stabilize the zero solution, which opens the way to the ex
tence of stable solitary pulses. Treating the dissipation
gain in the model~but not the linear coupling between th
two wave modes! as small perturbations, and making use
4-6
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FIG. 6. The instability of the pulse at the same values of parameters and for the same time interval as in Fig. 5, but in the spatia
of the length four times as large,L5512, without any specially imposed initial perturbation.
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the balance equation for the net momentum, we have fo
that the condition of the balance between the gain and d
pation may select two steady-state solitons from their c
tinuous family existing in the absence of the dissipation a
gain ~the family was found in an exact analytical form!.
When the zero solution is stable and, simultaneously,
SP’s are picked up by the balance equation for the mom
tum, the pulse with the larger value of the amplitude is e
pected to be stable in the infinitely long system, while t
other pulse must be unstable, playing the role of a separa
between attraction domains of the stable pulse and zero
lution. These predictions have been completely confirmed
direct simulations. Moreover, if the integration domain is n
very large~and periodic boundary conditions are impose!,
some pulses are stable even when the zero backgroun
unstable. An explanation of the latter feature, based on
concept of periodic suppression of the perturbations by
running pulse, is proposed. Furthermore, stable bound s
of two and three identical pulses have been found num
cally. An interesting issue, which is left for further work, is
possibility of formation of stable periodic arrays of th
pulses. Note that periodic pulse arrays in the KS-KdV eq
tion were studied in Refs.@8,9#.

Finally, it is worth noting that, since we found stab
pulses in the model including the dispersion term, i.e.,uxxx
in Eq. ~3!, a natural question is if the presence of this term
a necessary condition for the existence of stable pulses.
preliminary numerical study demonstrates that there is a
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nite critical minimum value of the coefficient in front of th
dispersive term~if all the other parameters of the system a
fixed! which is indeed necessary for the existence of sta
pulses. For instance, in a typical case considered in
work, with c50, a50.1, g50.05, andG50.15, this mini-
mum value was found to be roughly 0.5.

A plausible qualitative explanation for this effect~which
will be considered in detail elsewhere! is that, although the
dispersion does not directly affect the saturation mechan
stabilizing the pulses, it can inhibit mode coupling as
effective impedance, which will lead to attaining the nece
sary saturation at a higher amplitude of the pulse. Theref
the amplitude of pulses becomes larger as the dispersion
creases, while the pulse widths, directly determined by
dissipation, remain almost constant. This trend toward
formation of pulses with higher amplitudes in the presence
strong dispersion is a feasible cause for the existence
stable pulses.
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APPENDIX

Here we give a detailed description of the numeri
method employed for the simulation of Eqs.~5! and~6!. First
we introduce the necessary notation for the discrete Fou
transform~DFT!. Suppose we work in the intervalI 5@0,L#
with L-periodic functions. The interval is discretized b
means of a set ofN equidistant pointsxj5 jL /N, where j
50,1, . . . ,N21, with the spacing between themDx5L/N.
At these points, the numerical solutions foru(xj ,t) and
v(xj ,t) are denoted byuj (t) and v j (t), respectively. The
corresponding spectral variable isjk52pk/L, with kP
$2N/2,•••,21,0,1,•••,N/221% ~actually,N/2 is an integer;
see below!. Then the DFT is given by

ûk5Fuj5 (
j 50

N21

uj exp~2 i jkxj !,

k52
N

2
, . . . ,21,0,1, . . . ,

N

2
21. ~A1!

The inverse DFT is defined as

uj5F21ûk5
1

N (
k52N/2

N/221

ûk exp~ i jkxj !, j 50,1,•••,N21.

~A2!

FIG. 7. A stable bound state of two pulses found in the c
a50.1, g50.05, c50, andG50.15. Panels~a! and ~b! show es-
tablished shapes of theu andv fields.
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We employ the fast Fourier transform to carry out the D
and its inverse in the numerical form, therefore,N must be
taken equal to a power of 2.

The Fourier transform converts Eqs.~5! and ~6! into

ût1 i jkFS 1

2
u2D2 i jk

3û2 i jkv̂5ajk
2û2gjk

4û, ~A3!

v̂ t1 icjkv̂2 i jkû52Gjk
2v̂, ~A4!

wherek52N/2,•••,21,0,1,•••,N/221.
For the time integration of Eqs.~A3! and~A4!, the Crank-

Nicolson scheme is used, which leads to a nonlinear sys

ûn112ûn

Dt
2 i jk

3 ûn111ûn

2
2 i jk

v̂n111 v̂n

2

1
1

2
i jkFFS ~un!2

2 D1FS ~un11!2

2 D G
5~ajk

22gjk
4!

ûn111ûn

2
, ~A5!

v̂n112 v̂n

Dt
1 icjk

v̂n111 v̂n

2
2 i jk

ûn111ûn

2

52Gjk
2 v̂n111 v̂n

2
. ~A6!

e FIG. 8. A stable bound state of three pulses in the same cas
in Fig. 7.
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To solve this nonlinear system, the following iteratio
procedure is employed:

ûn11,05ûn, v̂n11,05 v̂n, ~A7!

ûn11,r 112ûn

Dt
2 i jk

3ûn11,r 111ûn

2
2 i jk

v̂n11,r 111 v̂n

2

1
1

2
i jkFFS ~un!2

2 D1FS ~un11,r 11!2

2 D G
5~ajk

22gjk
4!

ûn11,r 111ûn

2
, ~A8!
h-

04630
v̂n11,r 112 v̂n

Dt
1 icjk

v̂n11,r 111 v̂n

2
2 i jk

ûn11,r 111ûn

2

52Gjk
2 v̂n11,r 111 v̂n

2
. ~A9!

Here r 50,1, . . . ,R21, whereR is the iteration number in
each time step. In practice, the number of the Fourier mo
was taken to be 256 or 512, the typical time step was 0
and 0.02, and the iteration was run twice in each time st
v.
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