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Stabilized Kuramoto-Sivashinsky system
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A model consisting of a mixed Kuramoto—Sivashinsky—Korteweg—de Vries equation, linearly coupled to an
extra linear dissipative equation, is proposed. The model applies to a description of surface waves on multi-
layered liquid films. The extra equation makes it possible to stabilize the zero solution in the model, thus
opening the way to the existence of stable solitary pulses. By means of perturbation theory, treating the
dissipation and the instability-generating gain in the mgbet not the linear coupling between the two waves
as small perturbations, and making use of the balance equation for the net momentum, we demonstrate that the
perturbations may select two steady-state solitons from their continuous family existing in the absence of the
dissipation and gain. In this case, the selected pulse with the larger value of the amplitude is expected to be
stable, provided that the zero solution is stable. The prediction is completely confirmed by direct simulations.
If the integration domain is not very large, some pulses are stable even when the zero background is unstable.
An explanation for the latter finding is proposed. Furthermore, stable bound states of two and three pulses are
found numerically.
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[. INTRODUCTION tions are unstable in an infinitely long system, as the zero
solution, into which SP goes over jat—st|—, is unstable
The Kuramoto-SivashinskyKS) equation is a well- in both equations.

known model of one-dimensional turbulence, which was de- It is an issue of principal interest to find a physically
rived in various physical contexts, including chemical-relevant model which combines dissipative and dispersive
reaction waveg1], propagation of combustion fronts in features, and simultaneously suppatableSP’s. It appears
gaseg 2], surface waves in a film of a viscous liquid flowing that the simplest possibility to construct such a model is to
along an inclined plang3], patterns in thermal convection couple Eq(2) to an extra linear stabilizing equation, arriving

[4], rapid solidification[5], and others. It has the form at a system

Ui+ UUy= — arlUyy— YUyxxx (1) U+ UUyF Uy = — @Uyx— YUxxxxT €10, ()
where >0 and y>0 are coefficients accounting for the vitCoy=Tvyt €Uy, (4)
long-wave instability(gain and short-wave dissipation, re-
spectively. where the dissipative paramet@ffective diffusion coeffi-

A generalized form of the KS equation contains a linearcieny I'>>0 accounts for the stabilizatioisee below, andc
dispersive term borrowed from the Korteweg—de Vriesis a group-velocity mismatch between the two wave modes.
(KdV) equation, The coupling parameteks and e, must have the same sign

(otherwise the coupling gives rise to an instabjlityhile
2) their magnitudes may be different. However, it is always
possible to make them equad; =e,=¢, by means of an

. . ._obvious rescaling olu and v. Then, using the remaining
As well as the KS equation proper, the generalized equatiog ,jing invariance of the equations, it is possible to set

(2) applies to a description of surface waves on flowing lig-_ 1 "Th5 we will be dealing with a system containing four
uid films [6], and it also serves as a general model Whicqrreducible parameters

allows one to study various nonlinear dissipative waves
[7-10]. In particular, a subject of considerable interest was
the study of solitary-puls€SP solutions to both the KS
equation[11] and Eg.(2) [8,10. By means of numerical
methods, it is possible to find a vast family of SP solutions to Uit Cux— U= Tvyy. (6)
Egs.(1) and(2) in the formu(x,t) =u(x—st), with a con-

stant velocitys. However, it is obvious that all these solu- Note that the system conserves two “masses”:

Ut UUyF Uy = — @Uyy— YUyxxx-

Ut Uyt Uyyy = Ux= — @Uyy— YUyyxx, ()
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J+oo J'+oc II. STABILITY OF THE ZERO SOLUTION

M= u(x)dx, N= v(X)dx. (7)

As explained above, it is necessary to investigate the sta-
) ] ) bility of the trivial solutionu=v =0 before the consideration
The system of equatior(8) and(4) can find their natural  of pulses. To this end, into the linearized equatiéBisand
physical realization as a model describing coupled surfac%) we substitute a perturbation in the fornus-exp(kx
and interface waves in a two-layered flowing liquid film, cf. +\t) andv ~ exp(kx+\t), wherek is an arbitrary real wave
the similar interpretation of the single E¢L) or Eq. (2)  nymper of the perturbation, and is the corresponding in-

mentioned above. In particular, the linear coupling via thegiapijity growth rate, which leads to a dispersion equation
first derivatives is the same as in known models of coupled

internal waves propagating in multilayered flu[d2]. Then,
the linear dissipative equatidd) implies that the substrate

layer is essentially more viscous than the upper one. In fact N - )
the additional Eq(6) may also be nonlinear, but it can be The stability condition states that both solutions of the qua-

checked that the inclusion of the nonlinear teray into this ~ dratic equation8) must satisfy the inequality Re(k)]<0
equation does not produce any conspicuous difference; ther&t all the real values dt.

(A—ik3— ak?+ Yk (A +ick+Tk?) +k2=0.  (8)

fore, we focus on the simplest modgEgs. (5) and (6)] Fork—0, solutions to Eq(8) can be found in the form of
which provides for the stabilization of SP’s. an expansion

The system of equation®) and(6) is qualitatively simi-
lar to a system of linearly coupled Ginzburg-Land@sL.) M(K)=iN K+ N Ko+ 9

equations describing the propagation of localized pulses in a

fiber-optic core equipped with a distributed gain, which iswherex,=(—c=/c?+4)/2, and
linearly coupled to an extra lossy core that provides for the
stability of the pulse§13-15 (such double-core systems
have recently become available to experimental studies, and N,= ~(F—a) e +4+ (T +ajc (10)
they have very promising features for applications to optical 2\cZ+4 '
communications; see a short overview in REI6]). The

most fundamental version of this GL system is that in whichy,o sign+ being the same in; and \,. As \, is always

the extra stabilizing equation is also lingaf. Eq. (6)];in a5 at first order expansia®) implies neutral stability. Ex-

this case, SP solutions can be found in an exact analyticg)ression(10) yields a necessary condition for the stability of

form, and they are stable in a certain parametric reflell. o zer0 soiution at the second order of the expansion,
In this work, we will find stable SP’s in the system of Re\,=<0, which can be cast into a form

equationg5) and(6), which appear to be the first example of

stable pulses in a model of the KS type. In Sec. Il we analyze

the stability of the zero solution, which, as mentioned above, [—a= \/“_F|C|-
is a necessary condition for the stability of SP’s in an infi-

nitely long system. In Sec. lll, an analytical perturbationIn the particular cas&€=0, condition (11) amounts toI’
theory for the pulses is developed, which is based on treating «, which has a simple meaning: the stabilizing diffusion
the gain and dissipation constants y, andI' in Egs.(5)  coefficient in Eq.(6) must be larger than the instability-
and (6) as small parameter@vhile the group-velocity mis- driving “antidiffusion” (gain coefficient in Eq.(5). A very
matchc need not be smallIn the zero-order approximation Similar necessary stability condition is known in the above-
a=vy=I"=0, Egs.(5) and(6) have a one-parameter family mentioned system of coupled GL equations describing a
of exact soliton solutions. Using the known approach basedual-core optical fiber with one active and one passive cores
on the balance equation for the moment[ify we demon- [13,14].

strate that the combination of the perturbation terms in Eqs. A comprehensive analysis of the zero-solution stability
(5) and(6) may select one or two stationary pulses out of thewas performed by means of a numerical solution of the dis-
continuous family existing in the zero-order approximation.persion equatioi8). It was found that the full stability con-
As is known[13], the existence of two different SP solutions dition does not amount to inequalit1) (i.e., it may happen

is a necessary condition for the stability of one of them, thethat R¢A (k)] is negative at smalk, but it takes positive
second pulséthe one with smaller amplituglés unstable, as values in some interval of finite values &j. The numeri-

it plays the role of a separatrix between attraction domain otally found stability borders in the plane of the parameters
the zero solution and stable pulse. (a,I') for a fixed valuey=0.05 of the short-wave stabiliza-

In Sec. IV, we present results of direct numerical simula-tion parameter in Eq(5), and two different values of the
tions of the full systemEq. (5) and(6)], which demonstrate group-velocity mismatchq=0 andc=—1) are shown by
that stable SPs exist indeed. In fact, simulations sometimedashed curves in stability diagrams for the pulses displayed
produce stable pulses even in the case when the zero solutiomFigs. 1 and 2. In both cases, the zero solution is stable to
is not stable. This stability extension may be explained bythe left of the stability border. Note that, for smallandI,
the finite size of the simulation domain. Moreover, stablethe zero-solution stability region is indeed determined by Eq.
bound states of two and three pulses are also foundll), but at larger values ak andI” there appear additional
numerically. stability restrictions.
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25 ' - - ' T where 7 is an arbitrary parameter which determines the soli-
| ton’s amplitude and width, and the veloc#ytakes two dif-
ferent values for giver:

s=3lctand)T e a7 al. (14

It will be more convenient to use, as a parameter of the
soliton family, not the amplitudey, but rather the relative
velocity

0=C—S, (15
0.5f
in terms of which the amplitude is given by an expression
obtained from Eq(14):

0 0.05 0.1 0.15 0.2 0.25 AnP=c—5+1/6. (16)

FIG. 1. The stability region for solitary pulses in the parametric The range of meaningful values & is restricted by the
plane (@,I) of systemg5) and(6) for y=0.05 andc=0. The zero  condition 72>0.
solution is stable to the left of the dashed curve, and(E§). pro- We have checked by direct simulations of E¢K2) that
duces two physical solutions to the right of the continuous curvesoliton solutiong13) are stable within the framework of un-
The symbolsx and O mark points at which direct simulations perturbed equationd 2). On the other hand, simulations also
show, respectively, that the solitary pulse is unstable or stable. clearly demonstrate that collisions between solitons having
different velocities are inelastialthough not strongly in-
Ill. PERTURBATION THEORY FOR SOLITARY PULSES elastic, see a typical example in Fig. Blence the conserva-
At the zeroth order, setting=T"=«=0 in Egs.(5) and tive syst.em(12), unlike the KdV gquation_proper, isot an
(6), but keeping an arbitrary value of we arrive at a con- exactly integrable one. The non|nte_grab|!|ty of syst(alﬁ)
servative system consisting of the KdV equation coupled t!@S /S0 been confirmed by analysis of its symmetries per-

an extra linear one: formed by Burdg20]. o .
The next step is to restore the small dissipative and gain

(12) perturbations, getting back from Egd2) to Egs.(5) and
(6). To this end, we note that the unperturbed equati@as

Equations(12) have a family of exact two-component soliton CONServe not only the massgq. (7)] but also the net mo-

Ui+ UUyt Uyy =0y, Ut CUx=Uy.

solutions, mentum
u(x,t)=12%%sech(n(x—st)), v(x,t)=(c—s) tu(xt), p— 1f+m(u2+vz)dx. 17)
(13) 2) =
35 Following Ref.[7], in the first approximation of the pertur-
bation theory the evolution of the soliton may be described
a3t by means of thébalance equatiorfor the momentum. In-
deed, a consequence of Ed5) and (6) is the following
o5l exact evolution equation for the net momentum in the pres-
ence of the perturbations:
L i 1 dp A 2 2 2
E:f_w (auy— yus,—T'vy)dx. (18
150 .

il Steady-state SP’s are selected by the conditddétidt
=0. The right-hand side of E418) can be explicitly calcu-
lated in an approximation in whialhandv are substituted by

05y expressiong13). After a straightforward algebra, the equa-
tion dP/dt=0 can be cast into the form of a cubic equation

% o005 o1 015 02 025 0.3 for the relative velocitys of the unperturbed solitofiEq.

@ (13)]:
FIG. 2. The expected stability region for the solitary pulses in ~ -~ ~ -
the parametric planea(I') for y=0.05 andc=—1. The continu- 58%+ (7a—5¢)6°—56—7I'=0, a=aly, TI'=I/y.
ous and dashed curves have the same meanings as in Fig. 1. (19

046304-3



BORIS A. MALOMED, BAO-FENG FENG, AND TAKUJI KAWAHARA PHYSICAL REVIEW E64 046304

12 T T 12
8 gt
3 >
4 4 r
0 0
0 32 64 96 128 0 32 64 96 128
X X
() (c)
1 1
0
> -1 >
2t
-3 : : : -3 : - -
0 32 64 96 128 0 32 64 96 128
X X

(b) (d)

FIG. 3. A typical result of an inelastic collision between two stable solitons with different velocities, simulated within the framework of
the zero-order conservative systfly. (12)] with c=0 [(a) t=0, (b) t=0, (c) t=40, and(d) t=40]; the initial velocities of the two solitons
ares;=4.236 ands,=2.414.

Roots of Eq.(19) select SP’s that may exist as steady Equation(19) may be simplified in the case=0, if we
states W|th|n the framework of the perturbation theory. Noteadditiona”y assume that both renorma”zed paramévteaad
that, besides the obvious condition that physical rootséfor T : . . =

o . are large(in fact, we are interested in the case wHen
must be realthey may be both positive and negajivéhey ~3 ,
must also satisfy a condition that, after the substitution into™ @ >1). Then the term-55 may be neglected in E419),
Eq. (16), they produce;?>0. Generally speaking, there may SO that it takes the form
exist up to three physical roots of EAL9); however, in the - ~
vast parametric area considered, we have never encountered 55°+7a5°~7I'=0. (20)
a case when Eq19) would indeed have three physical roots, - ) )
while the existence of two physical solutions is quite pos-In the casec=0, the condition»">0 following from Eq.
sible; see below. As mentioned in Sec. | one may expect thaf.®) also takes a simple form: a physical root is that which
a SP may be stable frecisely twoo(liigerent pulses exist. Pelongs to either of the two intervals:
Then the one with the larger amplitude has a chance to be .
stable, while the pulse with the smaller amplitude is always o<—1; 0<éo<1. 21
unstablg13,14). Indeed, if there is a stable SP, we are deal- . . ~ ~ o
ing with a bistable system, as the parameters are chosen ¥4ith regard to the assumption thitand « are large, it is
that the zero solution is also stable; see Sec. II. In a bistabl@2Sy to see that the simplified equati@0) always has a real
system, there should exissaparatrix i.e., a border between 00tin the region5s>1, which is unphysical according to Eq.
attraction domains of two stable solutions, the separatrix it{21)- Two physical roots5<—1 exist under the condition
self being an unstable stationary solution. In the situation 1/14)2
with two different stationary SP solutions predicted by the f<_(_> =8, (22)
perturbation theory, the one with the smaller amplitude and 3115
larger width is a natural candidate for the role of the unstable ) - )
separatrix solution, while its counterpart with the larger am-NOte_'Fhat this condition does not contradict the necessary
plitude and smaller width may be stalitgenerally speaking, condition [Eq. (11)] of the stability of the zero solution,
it may be stable in a part of the parametric region where thisvhich in the present case+£0) takes the forni’>a. In-
situation takes placgl3,14). deed, the latter inequality is compatible with Eg2), pro-
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vided thata>/3(15/14)~1.856, which is correct, as here 3
we are dealing with the case when is large. However, :
inequality (22) is not necessarily compatible with the full  2s} .
stability condition for the zero solution; see Fig. 1. )
In the general case, it is easy to solve EtP) numeri- |
cally. Then, selecting a parametric region in which there are  “[ |
exactly two physical solutiongwhich, as it was explained /
above, is a necessary condition for the existence of a stabl- 1.5
SP), one may identify a narrower region in which this con-
dition holds and, simultaneously, the zero solution is stable.
Stable pulses may exist only inside that region where both
necessary stability conditions overlap, and direct simulations
show thatall the pulses belonging to the region are stable 0.5}
indeed, at least in case displayed in Fig. 1; see details below
The so-defined regions in the parametric plaael(), in 0 ,
which stable SP’s are expected, are displayed,yfei0.05, 0 0.05 0.1 0.15 02 0.25
in Figs. 1 and 2 forc=0 andc=—1, respectively. The *
condition of the existence of exactly two different physical FIG. 4. The expected nearly vanishing stability region for the
solutions for the pulses holds to the right of the continuoussolitary pulses in the parametric plane,[’) for y=0.05 andc
curve in these figurefnote that the part of the curve corre- =0.3. The continuous and dashed curves have the same meanings
sponding to sufficiently large values &f is well approxi- asin Fig. 1.
mated by analytical expressi@@2) obtained abovg At the . . )
points belonging to the continuous curve, the two physicapverywhere inside the expected stability region. Moreover,
solutions merge and disappear via a typical tangsaddle- gll the staple pulses were found to be strong attra_ctp_rs. For
node bifurcation. instance, in 'the case when= 0.1' anszQ.lS, the |n|F|aI '
The same analysis performed for values of the shortPulSes definitely relaxed to a single stationary SP if their
wavelength-dissipation parameterdifferent from the value initial amplitudeA, exceeded 1.7. In partl'cular, startlng'wnh
0.05, for which the results are presented in Figs. 1 and 20=3 andAq=12 att=0, the pulse attained the amplitude
shows that a variation of produces little change in terms of ValuesA=6.91 andA=7.18, respectively at=400. The
the expected SP stability regidgenerally, the size of the analytical prediction for the amplitude of the steady—stqte
region increases withy). As for the effect of the group- puIse_[Eq. (13)] (the one with the larger value of the arr;ph-
velocity mismatche, we have found that the stability region tUd® is, at the same values of the parametérg,=127"
quickly shrinks with the increase efwhenc is positive, and  ~6-45, so that a discrepancy with the numerical results is
there is no stability region at>c.,, wherec,, is slightly less than 10%. On the other hand, if the initial amphtudg was
larger than 0.3. In this case, the areas in which, the zer§© Small, €.9g.A,=0.75, the pulse decays to zero, which is
solution is stable, and there are two different stationary SP'g'j"SO natural, as the zero solution has its own attraction l_aasm.
respectively, do not overlap. To illustrate this point, a veryNote that for the secontsmalle) steady-state pulse, which
narrow stability region in the ¢,T) plane forc=0.3 is IS expected to play the role of a separatrix between the at-

stability region

shown in Fig. 4. traction basins of the stable pulse and zero solution, the per-
turbation theory predicts, in the same case, the amplitude
IV. NUMERICAL SIMULATIONS OF SOLITARY PULSES Auna~2.15; thus it seems quite natural that the initial pulses

with Ag=3 andAy=0.75 relax, respectively, to the stable
As stated above, it is necessary to directly check whethepulse and to zero.
stable SP’s indeed exist in the region where the stability is Figure 1 shows that the numerically found upper border
expected. To this end, Eg&) and(6), with periodic bound- of the stable-pulse region is quite close to the border of the
ary conditions were integrated by means of an implicit Fou-existence region for the steady-state pulses, as predicted by
rier spectral methodl19], the time step being typically 0.01 the perturbation theory. Unlike this, the numerically identi-
and 0.02.(A description of the method is given in the Ap- fied stability region extends far below the analytically found
pendix) The initial conditions were taken as suggested byborder of the zero-solution instability. For instance, it was
the perturbation theory, i.e., in the form of H43), but with ~ found that, aix=0.15 andl’=0.2, when the zero solution is
arbitrary values of the amplitude, in order to check whethetunstable against perturbations with finite wave numbers
strongly perturbed pulses relax to stable ones, i.e., whethdéhe fastest growing perturbation correspondingkte Kk
the stable pulses amdtractors ~1.3, a fairly stable pulse with the amplitude=11.75 was
Results are displayed in Fig. 1 by means of the symbols found in the simulations; the pulse’s amplitude predicted by
andO, standing for unstable and stable solitons, respectivelyhe perturbation theory was,,,~11.61 in this case. More-
(it may happen that, near the border with the unstable SP’syver, we ran simulations in which the most dangerous per-
some pulses which appear to be stable are subject to a vetyrbation with the above-mentioned wave numkerl.3 and
weak instability which does not manifest itself within the a rather large amplitudé,.= 1, was deliberately added to
integration time limit$. As seen, the pulses are indeed stablethe pulse in the initial configuration. Instead of growing and
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FIG. 5. Suppression of the initially imposed large perturbation which is the fastest growing instability mode in the infinite system by the
traveling pulse in the cases=0.15, I'=0.2, y=0.05, andc=0, in the spatial domain of the length=128 with periodic boundary
conditions. The perturbation is taken &g, = v per= 8o COSKnaX) With ag=1 andkny,=1.3. Panelga) and(b) show the initial configura-
tions of the fields, andc) and(d) are their shapes produced by the direct simulations by the momet20.

destroying the pulse, the perturbation veampressedby the  more identical exact solutions of the unperturbed syste?n
pulse, which remained stable for an indefinitely long timewith a certain separation between them. The simulations
(Fig. 5. have shown that BS’s featuring two or more peaks of equal
A cause of this extended stability can be understood. Aamplitudes indeed develop and propagate stably. These re-
similar feature was reported in Rdfl7] for a generalized sults for the two-peak and three-peak BS’s are illustrated in
asymmetric(with respect to the reflection— —x) cubic-  Figs. 7 and 8, respectively. We have also checked that, even
quintic GL equation with periodic boundary conditions, if the amplitudes of the initial pulses and separations be-
which has moving-pulse solutions. An explanation was thatween them are changed, a BS consisting of equidistant
the moving pulse, traveling across the integration domaingqual-amplitude peaks finally develops, i.e., the BS's are
periodically passes each point and suppresses the perturlfairly robust dynamical objects. In this connection, it is rel-
tion at a rate which exceeds the perturbation growth ratevant to mention that, in the above-mentioned coupled GL
(also see Ref.10], where stable pulses were observed in theequations, only two-pulse BS'’s are completely stable, while
KS-KdV equation; in that work, an explanation was that theBS’s of three pulses are split by perturbations breaking their
moving pulse was able to escape growing perturbation waveymmetry[18].
packets. It seems very plausible that a similar “sweeping”
mechanism explains the anomalous pulse stablllty in the V. CONCLUSION
present model. Indeed, when we repeated the simulations for
the same values of the parameters but in a spatial domain In this work, we have introduced a model based on the
four times as largéi.e., the corresponding sweeping rate is Kuramoto—Sivashinsky—Korteweg—de Vries equation,which
four times as small the pulse demonstrated the expectedis linearly coupled to an extra linear dissipative equation.
instability, even without any specially added perturbationThe model can be applied to the description of coupled sur-
seed, see Fig. 6. face and interface waves on flowing multilayered liquid
Similar to the result reported for a system of linearly films. The additional linear equation makes it possible to
coupled Ginzburg-Landau equations in Rgt8], bound stabilize the zero solution, which opens the way to the exis-
states(BS’s) with two or more peaks can be found in the tence of stable solitary pulses. Treating the dissipation and
present model, in addition to single SP’s. To this end, wegain in the modelbut not the linear coupling between the
took an initial configuration constructed as a set of two ortwo wave modesas small perturbations, and making use of
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FIG. 6. The instability of the pulse at the same values of parameters and for the same time interval as in Fig. 5, but in the spatial domain
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of the length four times as large,=512, without any specially imposed initial perturbation.

the balance equation for the net momentum, we have foundite critical minimum value of the coefficient in front of the

that the condition of the balance between the gain and dissdispersive terniif all the other parameters of the system are
pation may select two steady-state solitons from their confixed) which is indeed necessary for the existence of stable
tinuous family existing in the absence of the dissipation angulses. For instance, in a typical case considered in this

gain (the family was found in an exact analytical form work, with c=0, a=0.1, y=0.05, andl’=0.15, this mini-
When the zero solution is stable and, simultaneously, tweanum value was found to be roughly 0.5.

SP’s are picked up by the balance equation for the momen- A plausible qualitative explanation for this effe@thich

tum, the pulse with the larger value of the amplitude is ex-will be considered in detail elsewherss that, although the

pected to be stable in the infinitely long system, while thedispersion does not directly affect the saturation mechanism
other pulse must be unstable, playing the role of a separatrigtabilizing the pulses, it can inhibit mode coupling as an

between attraction domains of the stable pulse and zero seffective impedance, which will lead to attaining the neces-

lution. These predictions have been completely confirmed bgary saturation at a higher amplitude of the pulse. Therefore,
direct simulations. Moreover, if the integration domain is notthe amplitude of pulses becomes larger as the dispersion in-
very large(and periodic boundary conditions are imposed creases, while the pulse widths, directly determined by the
some pulses are stable even when the zero background déssipation, remain almost constant. This trend toward the
unstable. An explanation of the latter feature, based on théormation of pulses with higher amplitudes in the presence of
concept of periodic suppression of the perturbations by thatrong dispersion is a feasible cause for the existence of

running pulse, is proposed. Furthermore, stable bound statesable pulses.
of two and three identical pulses have been found numeri-

cally. An interesting issue, which is left for further work, is a
possibility of formation of stable periodic arrays of the
pulses. Note that periodic pulse arrays in the KS-KdV equa-

tion were studied in Ref¢8,9].
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FIG. 7. A stable bound state of two pulses found in the case FIG. 8. A stable bound state of three pulses in the same case as
a=0.1, y=0.05,c=0, andI"=0.15. Panel4a) and (b) show es- in Fig. 7.

tablished shapes of theandv fields.
We employ the fast Fourier transform to carry out the DFT

APPENDIX and its inverse in the numerical form, therefokemust be

. . . . taken equal to a power of 2.
Here we give a detailed description of the numerical The Fourier transform converts EdS) and (6) into
method employed for the simulation of E@S) and(6). First

we introduce the necessary notation for the discrete Fourier . 1 g on an
transform(DFT). Suppose we work in the intervaE[0,L] Ut+|§kf(§U2> —i§u—igw=agiu—y§u, (A3)
with L-periodic functions. The interval is discretized by

means of a set oN equidistant points;=jL/N, where] Ditictd —i&l=—T & (Ad)
=0,1,... N—1, with the spacing between thesx=L/N. t k K K

At these points, the numerical solutions fo(x;,t) and  \yherek=—N/2,---,—1,0,1;--,N/2—1.

v(xj,t) are denoted by;(t) andu(t), respectively. The For the time integration of EqéA3) and(A4), the Crank-
corresponding spectral variable &=2wk/L, with ke  Nijcolson scheme is used, which leads to a nonlinear system

{—N/2,---,-1,0,1; - - ,N/2— 1} (actually,N/2 is an integer;
see below. Then the DFT is given by gntiogn 3(Jn+l+an phtlggn
—i& —i&
N1 At 2 2
U= Fuj= 2, uj expl—i£xy), 1 [ [uM? (un+1)2
J A N A
N N an+lp(n
k—_E, ...,_1,0,1,...,5_1. (Al) z(agﬁ_,ygﬁ) 5 ' (AS)
The inverse DFT is defined as pn+l_gn pn+lyon antlp(n
+icéy —iéy
N/2—1 At 2 2
=F = Ugexpli&ex;), j=0,1,--,N—1. . .
U=F ey 2 Ueemigg), ] :_ngvn+l+vn o
(A2) ke 2 -
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STABILIZED KURAMOTO-SIVASHINSKY SYSTEM

To solve this nonlinear system, the following iteration
procedure is employed:

an+1,0:an vn+l,O:"n (A7)
an+l,r+l_an _ 3an+l,r+l+an _ l}n+l,r+1+l‘)n
At _ng 2 _ng 2
+£I§ (un)Z . (un+1,r+1)2
2 °k 2 2
) . an+1,r+1+an
= (@65, (A8)

PHYSICAL REVIEW E64 046304

n+1,r+1_vn

v
At

vn+1,r+1+vn

+icéy 5 —ié&

an+1,r+1+an
2

Un+1,r+1+vn

:_Fé:i 2

(A9)

Herer=0,1,... R—1, whereR is the iteration number in

each time step. In practice, the number of the Fourier modes
was taken to be 256 or 512, the typical time step was 0.01
and 0.02, and the iteration was run twice in each time step.

[1] T. Yamada and Y. Kuramoto, Prog. Theor. Ph%§, 681
(1976.

[2] G.I. Sivashinsky, Acta Astronaud, 1177(1977); Annu. Rev.
Fluid Mech.15, 179(1983.

[3] A.A. Nepomnyashchy, Mekhanika Zhidk. Gaz#&v. AN
SSSR, No. 3, p. 28(1974 [in Russian.

[4] G.Z. Gershuni, E.M. Zhukhovitsky, and A.A. Nepomnyash-
chy, Stability of Convective Flow@Nauka, Moscow, 1989(in
Russian.

[5] K. Kassler, A.K. Hobbs, and P. Metzener, Physic®8) 23
(1996.

[6] A.P. Ivansky, Prikl. Mekh. Tekh. Fiz. No. 2, p. 52980 [in
Russian.

[7] T. Kawahara and S. Toh, Phys. Flui?l3 1636(1989; also in
Dynamical Problems in Soliton Systeneslited by S. Takeno
(Springer, Berlin, 1985 p. 153; Pure Appl. Math43, 95
(1989.

[8] S. Toh and T. Kawahara, J. Phys. Soc. Jp.1257(1985.
[9] T. Kawahara and S. Toh, Phys. Fluigs 2103(1988.
[10] H.-C. Chang, E.A. Demekhin, and D.I. Kopelevich, Phys. Rev.
Lett. 75, 1747(1995.
[11] H.-C. Chang, Phys. Fluid®9, 3142(1986.
[12] J.A. Gear and R. Grimshaw, Stud. Appl. Mafif, 235(1984).
[13] B.A. Malomed and H.G. Winful, Phys. Rev. B3, 5365
(1996; J. Atai and B.A. Malomedibid. 54, 4371(1996.
[14] J. Atai and B.A. Malomed, Phys. Lett. 246, 412(1998.
[15] H. Sakaguchi and B.A. Malomed, Physical®7, 273(2000.
[16] L. Kalaugher, Fibre Syst. Eurofdg 19 (2001).
[17] M. Van Hecke, E. de Wit, and W. van Saarloos, Phys. Rev.
Lett. 75, 3830(1995.
[18] J. Atai and B.A. Malomed, Phys. Lett. 244, 551 (1998.
[19] B.-F. Feng and T. Kawahara, PhysicalB9, 301 (2000.
[20] G. Burde(unpublishegl

046304-9



